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Spectroscopy of Gd3+ and Eu3+ in the Calcite Structure 
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The spectroscopy of Gd3+ in the compounds with calcite structure ScBO, and CaC03 is discussed. In 
ScBO,, the Gd3+ ion replaces the smaller SC’+ ton without distorting the inversion symmetry of 
the cation site. This is confirmed by measuring the spectroscopy of Eu-‘+-doped ScBO, Transition 
probabilities are hard to derive for ScB03 : Cd’+ due to the presence of an impurity of unknown nature. 
In CaCO, the Gd3+ ion replaces the less charged Ca’+ ion. The charge compensation removes the 
inversion symmetry of the cation site, as is shown more clearly for CaC03 : Eu3+. Local charge 
compensation is dominant, but three sites with charge compensation at remote distance are observed 
as well. 0 1992 Academic Press, Inc. 

1. Introduction 

In recent studies measurements of the vi- 
bronic emission transitions of Gd3+ and 
Eu2+ in several host lattices have been re- 
ported (Z-5). Usually, the intensity of these 
vibronic transitions is weak, i.e., = 1% of 
the zero-phonon line. However, in some 
cases the intensities can be much higher (I, 
3, 4). Actually, one must compare the elec- 
tronic transition probability of the zero- 
phonon line and the vibronic transition 
probabilities. This is possible if decay mea- 
surements have been performed. For the 
%2 + %2 transition of Gd3+ in different 
host lattices, the vibronic transition proba- 
bility, Avib, differs by two orders of magni- 
tude. The smallest value for Avib is found for 
Gd3+ in LaF,, viz. 2 s-‘; the largest value 
is found for Gd3+ in YOCl, viz. 114 s-‘. 
For Eu*+ , which is isoelectronic with Gd3 + , 
even higher values are found (5). 

The differences in Avib are ascribed to the 
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influence of the surroundings of Gd3+. The 
polarizability of the ligands is, in this case, 
the main parameter. The difference between 
Gd3+ and Eu2+ is ascribed to the much lower 
position of the opposite parity configuration 
of Eu2+. 

Here we report results on the Gd3+ emis- 
sion and its vibronic contribution for Gd3+ 
in the calcite structure. The cation site has 
inversion symmetry (se). ScBO, and CaCO, 
were used. The latter needs charge compen- 
sation. This will give rise to different sites 
(6-8). 

In addition the Eu3+ luminescence in 
these host lattices was studied to check 
whether the site of the larger lanthanide ion 
still has inversion symmetry. For Eu3+ on a 
site with inversion symmetry only the 
magnetic-dipole (MD) transition ‘Do + ‘F, 
will be observed in emission. Due to the 
selection rules for vibronic transitions (9, 
10) this transition is not accompanied by 
vibronic transitions. The electric-dipole 
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(ED) transition jD,, + ‘F2 is strictly forbid- 
den as a purely electronic transition for such 
a Eu3+ site, so the position of the origin of 
the vibrational structure is unknown. Nei- 
ther is this transition suitable for studying 
vibronic lines, mainly because of the over- 
lap of the vibronic lines with other electronic 
transitions such as jD, ---, ‘F3 (II). There- 
fore, we do not compare the Eu3+ and Gd3+ 
vibronic spectra. 

After the Gd3+-doped samples and the 
Eu3+-doped samples are prepared in a simi- 
lar way, the latter are used to see whether 
the inversion symmetry of the cation site is 
conserved when Sc3 + and Ca*+ are replaced 
by a lanthanide ion. Here we make use of 
the fact that Gd3+ and Eu3+ have nearly the 
same size. 

2. Experimental 

2.1. Sample Preparation 

Measurements are performed on crystal- 
line powders with a dopant concentration 
of 0.1 mole%. The samples are checked by 
X-ray diffraction using CuKa radiation and 
by measuring the diffuse reflection spec- 
trum. The borates are prepared using a 
method described in (12). The X-ray dia- 
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FIG. 1. Emission spectrum of Eu3+ in ScB03 at 
4.2 K. Excitation is at 37,000 (upper spectrum) and at 
43,500 cm-’ (lower spectrum). The labels O-J (J = 
O-4) indicate the 4Do-+ ‘F, transitions. The upper spec- 
trum is magnified by a factor of 100. See text. 
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FIG. 2. Excitation spectrum of the ‘Da-+ ‘F, emission 
of Eu3+ in ScBO, at 4.2 K. The labels O-l, O-2, and O-6 
indicate the ‘Ft, -+ 5D1, sDz, and ‘L, transitions. 

grams give no indication of the presence of a 
second phase. The carbonates are prepared 
using the “nonfiring” method described by 
Donker et al. in (13). The X-ray diffraction 
diagrams show only the calcite phase. 

2.2. Optical Instrumentation 

The Eu3+ spectra have been measured on 
a Spex Fluorolog and a Perkin-Elmer MPF- 
44B spectrofluorometer (24). The Gd3+ 
spectra have been measured on a frequency- 
doubled dye laser system, described in (4). 

3. Results and Discussion 

3.1. ScBO, 

We first briefly discuss the spectroscopy 
of Eu3+ in ScBO, . Avella (1.5, 16), Hintzen 
(17), and Blasse and Dirksen (18) have re- 
ported earlier on this system. 

After excitation into the charge transfer 
(C.T.) state at 43,500 cm-‘, the emission 
spectrum shows only the 5Do -+ ‘F, transi- 
tion (Fig. 1). It is split in two crystal field 
components in agreement with S, site sym- 
metry. The excitation spectrum of the 
5Do + ‘F, emission is shown in Fig. 2. The 
MD transition ‘Fo-, ‘D, yields the strongest 
line excitation. In the region of the (ED) ‘F, 
+ ‘D, , jL, transitions, only vibronic struc- 
tures are observed. 



80 SYTSMA. MELIER, AND BLASSE 

The absence of forced ED transitions in 
emission as well as in excitation and the 
dominating ‘Do + ‘F, emission after C.T. 
excitation indicate that the observed Eu3+ 
ions are at a site with inversion symmetry. 
These are Eu3+ ions that occur on a Sc3+ 
site without distorting the site symmetry of 
the cation site. The widths of the lines are 
relatively large. Due to the low Eu3+ con- 
centration and the low intensity of the exci- 
tation lamp at 43,500 cm-’ we had to open 
the slits of the monochromator, which de- 
creases the resolving power significantly. 

After excitation at 37,000 cm-’ or into 
the 'L6 term level, an emission spectrum is 
observed in which the ‘D, * 7FJ (J = 0, 2, 
and 4) transitions dominate (Fig. 1). The 
excitation spectrum of these emissions 
shows that the corresponding C.T. state has 
moved to lower energy. The emission spec- 
trum shows that there is a considerable devi- 
ation from inversion symmetry for the Eu3+ 
ions under consideration. The line widths of 
the emission lines observed after excitation 
via the 'F,, --;, 5L, transition are much larger 
than those measured after excitation at 
43,500 cm-‘. This indicates that part of the 
Eu3+ ions is incorporated into a borate glass 
phase. The site symmetry of these Eu3+ ions 
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FIG. 3. Emission spectrum of Gd3+ in ScBOl at 4.2 
K. The weak zero-phonon line at 31,777 cm-’ is from 
Gd’+ in a borate glass phase. The vibronic spectrum is 
magnified by a factor of 100. The features indicated by 
V, indicate the Gd-(B03) vibration. See also text. 

TABLE I 

VIBRATIONAL STRUCTURE IN THE 6P7,2 --f *& 
EMISSION TRANSITION OF Gd3+ IN ScBO, AT 4.2 K 

IR data Raman data 
Position bib for ScB03 (19) for ScBO, (20) 

31,676 80 

31,461 295 262 
285 

31,354 402 ‘422 398 
31,095 660 637 639 

30,993 760 740 764 923 

[ 1200 1240 1220 1260 1220 

is lowered and forced ED transitions ap- 
pear. Therefore they can be excited selec- 
tively in the 'F. * 5L, transition. From a 
comparison of the intensities of the MD 
‘Do + 'F, transitions we estimate that less 
than 1% of the Eu3+ ions is in the glass 
phase. 

We now turn to the spectroscopy of 
ScBO, : Gd3+. The emission spectrum in the 
6P7,2 + 8S7,, region is given in Fig 3 The . . 
position of the main zero-phonon line is 
3 1,756 cm- ‘. The temperature-independent 
weak line at 3 1,777 cm- * shows a different 
excitation spectrum from the main line at 
3 1,756 cm- ‘. Therefore it is ascribed to 
Gd3+ in a borate glass phase. At energies 
lower than the zero-phonon line, vibronic 
lines are observed (Fig. 3). The ratio r of the 
integrated vibronic intensity to the inte- 
grated zero-phonon line intensity amounts 
to r = 0.05. Vibronic lines are observed 
from 300 to 1260 cm-’ from the zero-phonon 
line. The positions are to be compared with 
the frequencies of the strongest infrared (IR) 
active vibrations of ScBG, (19). These fre- 
quencies are summarized in Table I. For 
completeness the Raman frequencies (20) 
are also mentioned in the table. 

The v3 (B-O stretching) vibration around 
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FIG. 4. Excitation spectrum of the 6P712 + 8S7,2 emis- 
sion at 31,756 cm-’ of Gd3+ in ScBO, at 4.2 K. 

1280 cm-’ and the u2 and V, (B-O bending) 
vibrations of the borate group at 760 and 660 
cm-‘, respectively, are indicated in Fig. 3. 
The stretching of Gd3’-BO, is also indi- 
cated. The relative positions of the vibronic 
lines are a little higher than the values of 
the corresponding IR active vibrations. This 
reflects the change in bonding when replac- 
ing SC 3+ by Gd3+. 

The excitation spectrum in the 8S,,2 + 
%/2 region of the main 6P7,2 --, *S,,, emis- 
sion line is given in Fig. 4. Three crystal 
field (c.f.) components are observed at 
31,860, 31,906, and 31,924 cm-‘. The 
%2 term level is henceforth split into 
four crystal field components. This is in 
agreement with site symmetry s6 for the 
lanthanide ion. The decay of the 6P,,z + 
*s 712 emission is exponential with a decay 
time of 4.0 ms at 4.2 K. This is much 
shorter than expected for this transition of 
Gd3+ on a site with inversion symmetry. 
The excitation spectrum in the purely ED 
8s 712 * 6Z,,2 transition region consists, re- 
markably, of a broadband spanning the 
lasing region of the dye (Rhodamine 590). 
No excitations lines are observed in this 
region. 

The diffuse reflection spectrum, mea- 
sured at room temperature, shows an ab- 
sorption band around 33,300 cm-’ for 
ScBO, : Eu3+ as well as for ScBO, : Gd3+. 

This absorption band is also observed in the 
reflection spectrum of the starting material 
SC2O3. 

At room temperature and after low- 
resolution excitation at 35,970 cm-‘, i.e., in 
one of the 6Z,,2 levels, not only line emission 
of Gd3+ is observed, but also a structureless 
broad emission band ranging from 33,000 to 
20,000 cm-‘. The excitation spectrum of 
this broadband corresponds with the addi- 
tional absorption band observed in the dif- 
fuse reflection spectrum. The excitation 
spectrum shows an overlap with the 6P,,2, 

%2 --f %,2 emission transitions of Gd3 + . 
This allows energy transfer from Gd3+ to 
the impurity. 

The origin of this emission is unknown. 
One might suggest that it is due to the pres- 
ence of Ce3+ in the starting materials. The 
spectroscopy of ScBO, : Ce3’ has been in- 
vestigated (21, 22). Comparison of the 
ScBO, : Ce3+ spectra withour spectra shows 
that an assignment to Ce3 + cannot be correct. 

Due to the energy transfer process, the de- 
cay time does not reflect the radiative transi- 
tion probability, A,, , of the Gd3+ ion. It is 
clear that the Gd3 + site has inversion symme- 
try. In that case the 6P,,2 + *P,,, transition 
is totally due to magnetic-dipole interaction 
and the radiative transition probability can 
be calculated (23, 4). This yields 
A,, = (8.5 ms))‘. With the value of y = 0.05 
the vibronic transition probability is found to 
be 6 s-l. This value is comparable with those 
obtained for Gd3 + in other ionic host lattices. 
It is interesting to compare this result with 
the elpasolite Cs,NaGdC& . Here, Gd3+ also 
possesses a site with inversion symmery but 
the environment of the Gd3+ ion is more 
strongly polarizable than that in 
ScBO, : Gd3 + . The vibronic transitionproba- . . 
b&y found for the 6P,,2 + 8S,,, transition of 
Gd3+ in Cs,NaGdCl, is 28 s-’ (4). This is 
much larger than that forGd3+ in ScBO, . The 
difference reflects the strong dependence of 
the vibronic transition probability on the po- 
larizability. 
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FIG. 5. Emission spectrum of Eu3+ in CaC03 at 
4.2 K. The labels O-./indicate the sDO+ ‘FJ transitions. 
Excitation is at 19,000 cm-‘, the (‘F, + jDI transition) 
for the lower spectrum and at 21,500 cm-’ the 
(‘F, -+ jDz transition) for the upper spectrum. 

3.2. CaCO, 

The emission spectrum of Eu3+ in CaCO, 
is given in Fig. 5 for excitation via the MD 
7Fo + jD1 transition and via the forced ED 
7F,, + ‘D, transition. The spectra differ from 
each other and from the emission spectrum 
of ScBO, : Eu3+ (Fig. 1). Excitation into the 
‘D2 term level yields stronger forced ED 
emissions. These emissions do not show in- 
dividual c.f. components but are smeared 
out. 

The excitation spectrum of the ‘Do + ‘F, 
emission is shown in Fig. 6. The forced ED 
transitions 7F,-, ---, jD2 and 7Fo +- jL, are the 
dominating line excitations. The C.T. transi- 
tion has its maximum at 38,000 cm-‘. In 
the excitation spectrum of the jD,, + 7F2 
emission the forced ED transitions are even 
more pronounced. 

Excitation into the ‘D2 term level selec- 
tively excites the Eu3+ ions on a site without 
inversion symmetry, whereas the ‘F. - jD1 
excitation is nonselective. There are, conse- 
quently, at least two different Eu3+ sites, 
one with the ‘D,,+ 7F, emission dominating, 
and another with 5D, + ‘F, and 
‘Do + 7F2 emissions of comparable inten- 

sity. For the former, the charge compensa- 
tion hardly affects the site symmetry of the 

Eu3+ ion. This is possible for remote charge 
compensation. For the latter Eu3+ ions the 
inversion symmetry is lost. This occurs for 
local charge compensation, for example, for 
a Ca2+ vacancy on a nearest or next-nearest 
cation site. The absence of individual c.f. 
components in the ED emissions indicates 
that this charge compensation results in con- 
siderable inhomogeneous broadening. In 
conclusion, we have for Eu3+ in CaCO, at 
least two different sites. Since charge com- 
pensation occurs by 3 Ca& + 2 Et& + V& , 
there is one group of sites (Et& * V&J and 
another group Et&. The former shows a 
broader width. 

Now we turn to CaCO, : Gd3+. The emis- 
sion spectrum of CaCO, : Gd3+ -at 4.2 K is 
given in Fig. 7. The emission consists of 
three sharp lines with an underlying broad 
line, the relative intensity of which increases 
with the Gd3+ concentration. The narrow 
lines are labeled A, B, and C, as in Fig. 7. 
The broad line has a FWHM of 65 cm- ‘, 
which is a typical value for Gd3+ in a solid 
solution (24). 

The excitation spectrum in the 8S7,2 --, 
6p712 region of each of these three emission 
lines consists of three lines. These lines are 
assigned to the higher c.f. components of 
the 6P7/2 term levels. The decay times of the 
emission lines are measured to be 5.1 (A), 
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FIG. 6. Excitation spectrum of the jD,,+ ‘F, emission 
of Eu3+ in CaC03 at 4.2 K. The labels O-l, O-2, and O-6 
indicate the ‘F,, -+ jD,, ‘Dz, and ‘L6 transitions. 
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FIG. 7. Emission spectrum of Gd3* in CaCO1 at 

4.2 K. Three different sites, labeled A, B, and C, can 
be distinguished. The vibronic spectrum is magnified 
by a factor of 100. See Fig. 3. 

5.3 (B), and 6.7 (C) ms. At wavelengths 
longer than the zero-phonon lines, vibronic 
lines are observed (Fig. 7). After selective 
excitation of the sites, the distances to the 
main line are found to be 280,700, and 1410 
cm-‘. The first is ascribed to the 
Gd3+-CO:- vibration; the latter two are as- 
cribed to asymmetric bending and stretching 
vibrations of the CO:- group, respectively 
(25, 26). 

At 4.2 K only the lowest c.f. component 
of the 6P,,2 term is occupied, so that there 
should be only one emission line per Gd3+ 
site. Obviously, the extra charge of Gd3 + on 
a Ca2+ site is compensated in different 
ways. Lines A, B, and C correspond to Gd3’ 
sites with long decay times, i.e., with small 
deviations from inversion symmetry. They 
belong to the group Gd& in the notation 
introduced above. They have also been ob- 
tained by ESR in CaCO, : Gd3+ with very 
low Gd3+ concentration (10m4 at.%) (27). 
The broad line corresponds to the group 
(Gd& * V&J. Its existence makes it impossi- 
ble to give a thorough interpretation of the 
vibronic intensities and of the measured de- 
cay times. This result agrees with that for 
Eu3+ and shows that CaCO, is not a suitable 
host for fundamental studies of trivalent lan- 
thanide ions. 
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